Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 44(3): 1201-1208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423672

RESUMO

BACKGROUND/AIM: Enzyme-mediated grafting of poly (gallic acid) (PGAL) and L-arginine and a-L-lysine onto PGAL produces reactive oxygen species (ROS)-suppressor multiradical molecules with low cytotoxicity, high thermostability and water solubility with cancer treatment potential. This study examined the anticancer effects of these molecules in hepatic (HepG2, ATCC HB-8065), breast (MCF7, ATCC HTB-22), and prostate (PC-3, ATCC CRL-1435 and DU 145, ATCC HTB-81) cancer cell lines, as well as in fibroblasts from healthy human skin as control cells. MATERIALS AND METHODS: PGAL was synthesized by the oxidative polymerization of the naturally abundant GA using laccase from Trametes versicolor. Insertions of amino acids L-arginine and α-L-lysine on the PGAL chain were carried out by microwave. The cells of dermal fibroblast (Fb) were obtained from primary skin cultures and isolated from skin biopsies. The cancer cells lines of hepatic (HepG2), breast (MCF7), and prostate (PC-3, DU 145) were obtained from ATCC. The viability of the cancer cells and the primary culture was obtained by the MTT assay. Proliferation was demonstrated by crystal violet assay. Cell migration was determined by Wound healing assay. Finally, cell cycle analysis was carried out with cells. RESULTS: The results show that 200 µg/ml of PGAL cultured in vitro with prostate cancer cells decreased viability, proliferation, and migration, as well as arrested cells in the G1 and S phases of the cell cycle. In contrast, the dermal fibroblasts and the hepatic line remained unaffected. The random grafting of L-Arg and a-L-Lys onto the PGAL chain also decreased the viability of prostate cancer cells. CONCLUSION: PGAL and PGAL-grafted amino acids are potential adjuvants for prostate cancer treatment, with improved physicochemical characteristics compared to GA.


Assuntos
Ácido Gálico , Neoplasias da Próstata , Salicilatos , Masculino , Humanos , Ácido Gálico/farmacologia , Lisina , Trametes , Neoplasias da Próstata/patologia , Células MCF-7 , Arginina/farmacologia , Proliferação de Células
2.
Biomater Adv ; 138: 212960, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913230

RESUMO

The α-l-Lysine (LL) grafting onto the enzymatic poly(gallic acid) (PGAL) produces a helicoidal brush-like antimicrobial polymer containing outer positive-charged moieties. Best results are found with ca. 16 mol% α-LL-grafting for the inhibition of gram-positive Staphylococcus aureus and gram-negative Escherichia coli strains. Membrane permeability, confocal and scanning electron microscopy studies suggest a pore-formation and translocation mechanisms by initial electrostatic interaction of positive charged polymer at the negatively charged bacterial membranes. The attained polymer displays high concentration of hemolysis (Hc) in erythrocytes, and no lymphocyte mitochondrial activity. Interestingly, PGAL-LL is not cytotoxic on human dermal fibroblast. The antioxidant activity after the LL hybridization is also demonstrated by DPPH, ORAC, FRAP and hydroxyl radical scavenging, which enhances the preservation of human cells in addition to antimicrobial for this polymer.


Assuntos
Infecções por Escherichia coli , Infecções Estafilocócicas , Antibacterianos/farmacologia , Escherichia coli , Ácido Gálico , Humanos , Lisina , Polímeros , Staphylococcus aureus
3.
Mater Sci Eng C Mater Biol Appl ; 121: 111650, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579431

RESUMO

Microwave-mediated grafting of L-Arg onto naturally derived and stable multiradical poly(gallic acid) (PGAL) in aqueous media has been successfully achieved. This polymeric material has no adverse effect in human cells as there is no hemolytic activity upon MTT and Neutral Red assays. The analytical and computational characterization studies carried out in this study describe a helical molecular structure with random incorporation of L-Arginine pendant groups from PGAL's backbone. The antioxidant properties of the precursor polymer are preserved as proved by the elimination of stable DPPH and hydroxyl radical scavenging, as well as the FRAP and ORAC assays. Regarding the latter, the oxygen radical inhibition is enhanced compared to PGAL, which is attributed to the guanidyl moieties. PGAL-g-L-Arg displays antimicrobial activity against Gram (+) Listeria monocytogenes and Staphylococcus aureus strains with a MIC of 0.8 g/L and a bacteriostatic effect against Gram (-) Escherichia coli. Additionally, scanning electron and confocal fluorescence microscopies as well as crystal violet colorimetric assay demonstrate that the mechanism involved in the bacterial inhibition is related to the formation of porous channels on the membrane, which is discussed according to the helical secondary structure of the polymer and the amino acid guanidyl moieties interacting to bacterial membranes.


Assuntos
Antioxidantes , Ácido Gálico , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Arginina , Ácido Gálico/farmacologia , Humanos , Staphylococcus aureus
4.
Inflammation ; 44(1): 174-185, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32803665

RESUMO

Cytokines like IL-6, TNF-α, and IL-1ß are important mediators of inflammation in many inflammatory diseases, as well as in cellular processes like cell proliferation and cell adhesion. Finding new molecules that decrease cell proliferation, adhesion (inflammatory infiltrate), and pro-inflammatory cytokine release could help in the treatment of many inflammatory diseases. The naturally derived poly(gallic acid) (PGAL), produced enzymatically from gallic acid in aqueous medium, is a non-toxic, thermostable multiradical polyanion that is antioxidant and has potential biomedical uses. Experimental evidence has demonstrated that PGAL reduces pro-inflammatory cytokines, which are the target of some inflammatory diseases. PGAL decreased IL-6, TNF-α, and IL-1ß production in human monocytes exposed to PMA without affecting cell viability. Additionally, PGAL reduced cell proliferation by affecting the transition from the S phase to the G2 phase of the cell cycle. Cell adhesion experiments showed that PMA-induced cell adhesion was diminished with the presence of PGAL, particularly at a concentration of 200 µg/mL. These properties of PGAL show a potential use for treating inflammatory diseases, such as psoriasis or arthritis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Ácido Poliglutâmico/análogos & derivados , Polilisina/análogos & derivados , Anti-Inflamatórios/farmacologia , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/uso terapêutico , Polilisina/farmacologia , Polilisina/uso terapêutico , Células THP-1
5.
Food Chem ; 199: 485-91, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26775999

RESUMO

The enzyme-mediated grafting of tert-butylhydroquinone (TBHQ) onto chitosan and further crosslinking to agave inulin (agavin) has been successfully achieved in a mild and non-toxic two-step route. The resulting products were characterized by nuclear magnetic resonance (NMR) and Infra-red spectroscopies to assess the molecular structure. The study of acute oral toxicity in mice revealed no adverse short-term effects of consumption in the synthesized materials with non-toxicity evidence until 2000 mg/kg through an oral acute administration. Importantly, this study proves that the compound maintains the radical scavenging capacity of the phenolic antioxidant upon ferric-reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays with a measured half-maximal inhibitory concentration (IC50) for the best case of 1.54 g/L based on inhibition of 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid diammonium salt (ABTS). Additionally, the novel compound presented high prebiotic activities as ascertained in the presence of lactic acid bacteria (LAB).


Assuntos
Antioxidantes/química , Quitosana/química , Hidroquinonas/química , Inulina/química , Prebióticos/análise , Agave/química , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...